Sains Malaysiana 53(6)(2024): 1243-1253
http://doi.org/10.17576/jsm-2024-5306-02
Matrix Metallopeptidase 3 Coding SNPs
Suppress Cell Invasion in MCF7 Breast Cancer Cells
(Pengekodan Matriks Metallopeptidase 3 SNPs
Menekan Pencerobohan Sel dalam Sel Kanser Payudara MCF7)
SHAFINAH AHMAD SUHAIMI1,4,
SOON CHOY CHAN2, PEI PEI CHONG3, NORAZALINA SAAD4*, DE MING CHAU5 & ROZITA ROSLI4,
1Department of Biomedical Sciences, Advanced Medical and Dental Institute,
Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia
2School of Liberal Arts, Science and Technology,
Perdana University, 50490 Kuala Lumpur, Malaysia
3School of Biosciences,
Faculty of Health and Medical Sciences, Taylor’s University, 47500 Subang Jaya,
Selangor, Malaysia
4UPM-MAKNA Cancer Research
Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia
5Department of Biomedical Sciences, Faculty of Medicine and Health
Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Diserahkan: 17 April 2023/Diterima: 1 Februari 2024
Abstract
Matrix metallopeptidase 3
(MMP3) is among the key players in breast cancer metastasis that contributes to
the highest cancer-related deaths in females globally. Previously, in silico analyses had shown that several coding single nucleotide polymorphisms (SNPs)
of MMP3 were predicted to alter the secondary structures of MMP3 and subsequently reduce its mRNA stability. To validate the mentioned
hypotheses, this study aimed to determine the effects of six coding SNPs of MMP3 on its mRNA stability, protein expression level as well as cell invasiveness in
vitro. In this study, breast adenocarcinoma MCF7 cells were
transfected with MMP3 wild type (MMP3-WT) and a variant containing SNPs
(MMP3-Var). Following transfection, protein expression level, mRNA stability
and enzyme activity of MMP3-WT and MMP3-Var were evaluated. Finally, the effect
of MMP3 coding SNPs on cell invasiveness in breast cancer was
determined. In this study, the mRNA stability, protein expression level and
enzymatic activity of MMP3-Var were significantly reduced. Moreover, the
presence of MMP3 coding SNPs led to attenuated invasiveness of
transfected MCF7 cells. In conclusion, these findings may contribute to the
current understanding of these coding SNPs with metastasis in breast cancer.
Keywords: Carcinoma; in vitro; MMP3; mammary; metastasis; stromelysin-1
Abstrak
Matriks metallopeptidase 3 (MMP3) adalah salah satu
daripada pemain utama bagi metastasis kanser payudara yang menyumbang kepada
kematian berkaitan kanser yang tertinggi dalam kalangan wanita di seluruh
dunia. Sebelum ini, analisis in silico menunjukkan bahawa beberapa polymorfisme nukleotida tunggal (SNPs) pengekodan MMP3 diramalkan untuk mengubah struktur sekunder MMP3 dan seterusnya
mengurangkan kestabilan mRNA. Bagi mengesahkan hipotesis tersebut, kajian ini
bertujuan untuk mengenal pasti kesan in vitro enam SNPs pengekodan MMP3 ke atas kestabilan mRNA, tahap pengekspresan protein dan kemansangan sel. Dalam
kajian ini, sel karsinoma payudara MCF7 telah ditransfeksi dengan MMP3 jenis liar (MMP3-WT) dan varian mengandungi SNPs (MMP3-Var). Selepas
transfeksi, tahap pengekspresan protein, kestabilan mRNA serta aktiviti enzim
bagi MMP3-WT dan MMP3-Var telah dinilai. Akhirnya, kesan SNPs pengekodan MMP3 terhadap kemansangan sel kanser payudara telah ditentukan. Kestabilan mRNA,
tahap pengekspresan protein dan aktiviti enzim MMP3-Var menurun dengan
signifikan. Tambahan pula, SNPs pengekodan MMP3 merencat kemansangan
sel-sel MCF7 yang telah ditransfeksi. Kesimpulannya, hasil kajian ini boleh
menyumbang kepada pemahaman semasa mengenai SNP pengekodan ini dengan
metastasis dalam kanser payudara.
Kata kunci: Karsinoma; in vitro; mamari; MMP3;
metastasis; stromelysin-1
RUJUKAN
Almutairi, S., Kalloush, H.M.d., Manoon, N.A. & Bardaweel, S.K. 2023.
Matrix metalloproteinases inhibitors in cancer treatment: An updated review. Molecules 28: 5567.
Ayupe, A.C. & Reis, E.M. 2017.
Evaluating the stability of mRNAs and noncoding RNAs. In Enhancer RNAs.
Methods in Molecular Biology, edited by Ørom, U. New York: Humana Press.
pp. 139-153.
Banik, P., Majumder, R.,
Mandal, A., Dey, S. & Mandal, M. 2022. A computational
study to assess the polymorphic landscape of matrix metalloproteinase 3
promoter and its effects on transcriptional activity. Computers in Biology and Medicine 145: 105404.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L.,
Torre, L.A. & Jemal, A. 2018. Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68: 394-424.
Chan, S.C. 2013. Identification and
analysis of single nucleotide polymorphisms in matrix metallopeptidase 2 and 3
genes in Malaysian breast cancer patients. PhD Thesis, Universiti Putra
Malaysia (Unpublished).
Chin,
L.T., Liu, K.W., Chen, Y.H., Hsu, S.C. & Huang, L. 2021. Cell-based assays
and molecular simulation reveal that the anti-cancer harmine is a specific
matrix metalloproteinase-3 (MMP-3) inhibitor. Computational Biology &
Chemistry 94: 107556.
Feoktistova, M., Geserick, P. &
Leverkus, M. 2016. Crystal violet assay for determining viability of cultured
cells. Cold Spring Harbor Protocols 2016:pdb.prot087379.
Figueira, R.C., Gomes, L.R., Neto,
J.S., Silva, F.C., Silva, I.D.C.G. & Sogayar, M.C. 2009. Correlation
between MMPs and their inhibitors in breast cancer tumor tissue specimens and
in cell lines with different metastatic potential. BMC Cancer 9: 20.
Gebert,
M., Jaskiewicz, M., Moszynska, A., Collawn, J.F. & Bartoszewski, R. 2020.
The effects of single nucleotide polymorphisms in cancer RNAi therapies. Cancers 12: 3119.
Kotnis, A., Sarin, R.
& Mulherkar, R. 2005. Genotype, phenotype and cancer: Role of low
penetrance genes and environment in tumour susceptibility. Journal of
Biosciences 30: 93-102.
Kousidou, O.C., Roussidis, A.E.,
Theocharis, A.D. & Karamanos, N.K. 2004. Expression of MMPs and TIMPs genes
in human breast cancer epithelial cells depends on cell culture conditions and
is associated with their invasive potential. Anticancer Research 24:
4025-4030.
Li, X., Xue, Y., Liu, X., Zheng, J.,
Shen, S., Yang, C., Chen, J., Li, Z., Liu, L., Ma, J., Ma, T. & Liu Y.
2019. ZRANB2/SNHG20/FOXK1 axis regulates vasculogenic mimicry formation in
glioma. Journal of Experimental & Clinical Cancer Research 38: 68.
Li,
S., Pritchard, D.M. & Yu, L.G. 2022. Regulation and function of matrix
metalloproteinase-13 in cancer progression and metastasis. Cancers 14:
3263.
Li,
Z. & Chen, L. 2023. Predicting functional consequences of SNPs on mRNA
translation via machine learning. Nucleic Acids Research 51: 7868-7881.
Liang,
M., Wang, J., Wu, C., Wu, M., Hu, J., Dai, J., Ruan, H., Xiong, S. & Dong,
C. 2021. Targeting matrix metalloproteinase MMP3 greatly enhances oncolytic
virus mediated tumor therapy. Translational Oncology 14: 101221.
Maiti, A., Okano, I., Oshi, M.,
Okano, M., Tian, W., Kawaguchi, T., Katsuta, E., Takabe, K., Yan, L., Patnaik,
S. & Hait, N.C. 2021. Altered expression of secreted mediator genes that
mediate aggressive breast cancer metastasis to distant organs. Cancers
(Basel) 13: 2641.
Nagase, H.,
Visse, R. & Murphy, G. 2006. Structure and function of matrix
metalloproteinases and TIMPs. Cardiovascular Research 69: 562-573.
Pijuan, J., Barceló, C., Moreno,
D.F., Maiques, O., Sisó, P., Marti, R.M., Macia, A. & Panosa, A.
2019. In vitro cell migration, invasion, and adhesion assays:
From cell imaging to data analysis. Frontiers in Cell and Developmental
Biology 7: 107.
Raeeszadeh-Sarmazdeh,
M., Do, L.D. & Hritz, B.G. 2020. Metalloproteinases and their inhibitors:
Potential for the development of new therapeutics. Cells 9: 1313.
Sampieri, C.L.,
León-Córdoba, K. & Remes-Troche, J.M. 2013. Matrix metalloproteinases and
their tissue inhibitors in gastric cancer as molecular markers. Journal of
Cancer Research and Therapeutics 9: 356-363.
Schneider, C.A., Rasband, W.S. &
Eliceiri, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature
Methods 9: 671-675.
Si-Tayeb, K., Monvoisin, A.,
Mazzocco, C., Lepreux, S., Decossas, M., Cubel, G., Taras, D., Blanc, J.F.,
Robinson, D.R. & Rosenbaum, J. 2006. Matrix metalloproteinase 3 is present
in the cell nucleus and is involved in apoptosis. American Journal of
Pathology 169: 1390-1401.
Suhaimi, S.A., Chan,
S.C. & Rosli, R. 2020. Matrix
metallopeptidase 3 polymorphisms: Emerging genetic markers in human breast
cancer metastasis. Journal of Breast Cancer 23: 1-9.
Welch,
D.R. & Hurst, D.R. 2019. Defining the hallmarks of metastasis. Cancer
Research 79: 3011-3027.
Wu, J.S., Jiang, J., Chen, B.J.,
Wang, K., Tang, Y.L. & Liang, X.H. 2021. Plasticity of cancer cell
invasion: Patterns and mechanisms. Translational Oncology 14:
100899.
Yamaguchi,
K., Yoshihiro, T., Ariyama, H., Ito, M., Nakano, M., Semba, Y., Nogami, J.,
Tsuchihashi, K., Yamauchi, T., Ueno, S., Isobe, T., Shindo, K., Moriyama, T.,
Ohuchida, K., Nakamura, M., Nagao, Y., Ikeda, T., Hashizume, M., Konomi, H.,
Torisu, T., Kitazono, T., Kanayama, T., Tomita, H., Oda, Y., Kusaba, H., Maeda,
T., Akashi, K. & Baba, E. 2022. Potential therapeutic targets discovery by
transcriptome analysis of an in vitro human gastric signet ring
carcinoma model. Gastric Cancer 25: 862-878.
*Pengarang untuk surat-menyurat; email: norazalina@upm.edu.my
|